quarta-feira, 21 de novembro de 2012

awe anderson o video da parodia...


Potenciação de Frações Algébricas

A potenciação de frações algébricas utiliza o mesmo processo das frações numéricas, o expoente precisa ser aplicado ao numerador e ao denominador, considerando o valor do denominador diferente de zero. Após o desenvolvimento da potenciação, se for o caso, simplifique a fração, pois dividindo seus elementos pelo mesmo número, isto é, pelo divisor comum ao numerador e ao divisor. Observe alguns exemplos:

Frações Numéricas



Frações Algébricas



Nos casos em que o expoente possui sinal negativo, devemos inverter a base e trocar o sinal do expoente para positivo. Feito esse processo, basta aplicar o expoente ao numerador e ao denominador. Observe:
Algumas situações exigem maior complexidade nos cálculos, utilizando as propriedades estudadas como soma de frações com denominadores diferentes, mmc de polinômios, expoente negativo, divisão de frações, multiplicação de frações, potenciação e simplificação de termos semelhantes. Veja:

multiplicação e divisao de frações algébricas

Para multiplicar ou dividir frações algébricas, usamos o mesmo processo das frações numéricas. Fatorando os termos da fração e simplificar os fatores comuns.

Exemplos:



Não esqueça! Para aprender ''frações algébricas'', você precisa saber:
Polinômios e monômios, fator comum em evidência, diferença de dois quadrados, agrupamento, trinômio do quadrado perfeito, simplificação de frações algébricas, operações com frações.

Exemplo de Aplicabilidade: As expressões algébricas são encontradas muitas vezes em fórmulas matemáticas. Por exemplo, no cálculo de áreas de retângulos, triângulos e outras figuras planas.

adições e subtraçoes de frações algébricas

Os números na forma de fração pertencem ao conjunto dos números racionais e são utilizados na representação das partes de um inteiro. Entre as frações, podemos efetuar todas as operações básicas, como adicionar, subtrair, multiplicar, dividir, potencializar e aplicar a raiz quadrada.

Quando as frações possuem o mesmo denominador, basta somar ou subtrair os numeradores.
Ex:
Quando as frações possuem denominadores diferentes, basta reduzi-las ao mesmo denominador e em seguida, somar ou subtrair os numeradores.
Ex:
Convém lembrar dos jogos de sinais.
Na expressão
( x³ + 2 y² + 1 ) – ( y ² - 2 ) = x³ +2 y² + 1 – y² + 2 = x³ + y² +3
Ex.: 2 x³ y² z + 3x³ y² z = 5x³ y² z
ou
2 x³ y² z -
3x³ y² z = -x³ y² z

Exemplos:


'

Não esqueça! Para resolver '''Adição e Subtração de Frações Algébricas'', você/

Fator comum em evidência, diferença de dois quadrados, agrupamento, trinômio do quadrado perfeito, mmc polinômios, simpl. frações algébricas.

Exemplo de Aplicabilidade: Em física também, bastando lembrar que no lançamento de um projétil, a trajetória é uma parábola do segundo grau, que é um polinômio do segundo grau (y=a.x^2+b.x+c).

REDUÇÃO DE FRAÇÕES ALGÉBRICAS AO MESMO DENOMINADOR

MMC EO MDC DE MONÔMIOS E POLINÔMIOS

 
 




















SIMPLIFICAÇÃO DE FRAÇÕES ALGÉBRICAS

SIMPLIFICAÇÃO

Para simplificar uma fração, basta dividir o numerador e o denominador por seus divisores comuns.

Exemplos

1) 10 a²b / 15a³ =
    (10 a a b ) / ( 15 a a a )=
    ( 2.5.a.a.b) /( 3.5.a.a.a) =
    = 2b/3a


2) ( a² - 9) / ( a + 3) =
    [(a + 3) / (a – 3) ] / (a + 3) =
    = a – 3

Observe que neste último exemplo, fatoramos os termos da fração e cancelamos os termos comuns.
Uma fração que não admite mais simplificação é chamada de irredutível.

FRAÇÕES ALGÉBRICAS

FRAÇÕES ALGÉBRICAS
Frações algébricas é o quociente de divisão de duas expressões algébricas

Exemplos

a) x/5y
b) (x+y) / (a – 1)
c) ( x – 1) / ( y + 2 )

Observações

1) Nas rações algébricas o numerador e o denominador são polinômios ou monômios
2) O denominador de uma fração nunca pode ser zero
3) As propriedades das frações algébricas são as mesmas das frações aritmética.

agrupamento

Fatoração

Fatorar é transformar equações algébricas em produtos de duas ou mais expressões, chamadas fatores.

Fatoração por Agrupamento

Consiste em aplicar duas vezes o caso do fator comum em alguns polinômios especiais.

Como por exemplo:
ax + ay + bx + by

Os dois primeiros termos possuem em comum o fator a , os dois últimos termos possuem em comum o fator b. Colocando esses termos em evidência:

a.(x+y) + b.(x+y)

Este novo polinômio possui o termo (x+y) em comum. Assim colocando-o em evidência:


(x+y).(a+b)

Ou seja: ax + ay + bx + by = (x+y).(a+b)

fatoração-fator em evidência

Fatoração

Página 002
1. Fator comum em evidência:   12x2 + 4x3 - 8x4
Nesta técnica a gente verifica cada um dos termos, procurando ver se os
coeficientes (o que fica na na frente das variáveis x, y etc), podem ser
divididos por um certo número. Neste caso 12, +4, -8 podem ser divididos
por 4. Então, colocamos o número 4 em evidência, ou seja, antes de um
parênteses, dividimos cada um dos coeficientes por 4 e escrevemos o
resultado no lugar o próprio coeficiente. Veja:
12x2 + 4x3 - 8x4
4 (3
x2 + 1x3 - 2x4). Observe que se multiplicarmos o 4 pelos novos coeficientes
3, 1 e -2 iremos ter de volta os coeficientes originais 12, 4 e -8.

1. Fator comum em evidência (Continuação) :
12x2 + 4x3 - 8x4 = 4 (3x2 + 1x3 - 2x4)
Agora precisamos verificar se podemos dividir cada um dos termos que estão dentro
dos parênteses,  por um mesmo fator literal (que contém letra). Neste caso podemos
notar que o fator x2 serve para dividir cada uma dos termos da expressão.
Desta forma, escrevemos o x2 antes dos parênteses, ao lado do número 4, e dividimos
cada um dos termos por ele. Veja como fica:
4x2 (3 + 1x - 2x2)